St Luc Association

CENTRE HOSPITALIER

🔳 📕 📕 Saint Joseph • Saint Luc

Sarcoidosis and inorganic dust exposure in the MINASARC (Mineralo-Nano-SARCoidosis) study

observed by TEM and the particle content in the each particle family.

Catinon M^{1,2,5}, Cavalin C^{2,3,4}, Chemarin C¹, Rio S¹, Roux E¹, Pecquet M¹, Blanchet AS¹, Vuillermoz S¹, Pison C⁶, Arbib F⁶, Bonneterre V⁷, Valeyre D⁸, Freynet O⁸, Mornex JF⁹, Freynond N¹⁰, Pacheco Y¹⁰, Thivolet F¹¹, Kambouchner M¹², Bernaudin JF¹³, Nathalizio A¹⁴, Rosental PA², Vincent M^{1,2,5} 1: Pneumology Unit and Laboratory of Mineral Pathologies. Centre Hospitalier Saint Joseph et Saint Luc Lyon; 2: Centre for Employment Studies (CEE, Noisy-le-Grand); 5: Minapath Développement. Social and Solidarity Start-up Company, Villeurbanne; 6: Pneumology Department, Hôpital de la Tronche, Grenoble; 7: Occupational Medicine and Health Department, Grenoble-Alpes Teaching Hospital, Lyon; 10: Pneumology Unit, Lyon; 10: Pneumology Unit, Lyon; 11: Department of Cytology and Pathology, Lyon Civil Hospitals (East Hospital Complex), Lyon; 12: Department of Cytology and Pathology, Avicenne Hospital, Bobigny; 13: Department of Cytology and Pathology, Pierre et Marie Curie University, Paris; 14: Dermscan, Villeurbanne

It has been suggested that sarcoidosis could be associated with exposure to inorganic particles (Newman, 2012; Vincent, 2015). Mineral exposome may be studied by a specific questionnaire (SQ) throughout the lifetime, both in professional and extraprofessional contexts and by mineralogical analysis (MA) performed on broncho-alveolar lavages (BAL). MINASARC study is a prospective case-control study study is a prospective case-control study is a prospective cas measuring mineral exposome by SQ and MA of BAL by Transmission Electron Microscopy (TEM) in 20 sarcoidosis cases (SarC) compared to 20 healthy volunteers (HV). Our objective is to compare MA and SQ results between SarC and HV and study the correlation between MA and SQ.

Population studied

Every SarC is matched to a HV by age (10-year age brackets), sex and smoking habits (non-smoker or less than 5 packs/year (PY); between 5 and 10 PY; over 10 PY).

Criteria for inclusion and exclusion of HV

Inclusion: age 20-50; absence of respiratory pathology; simple spirometry within normal limits. FEV1>85% in theory; normal pulmonary radiography; absence of cardiac pathology; protected by health insurance regime; having signed an informed consent template; hepatitis B, C and HIV pathology <0. Exclusion: Pregnant woman; active cardio-respiratory pathology; psychiatric pathology; refusing the terms of the informed consent.

Criteria for inclusion and exclusion of SarC

Inclusion: suspected sarcoidosis stages 1-4; age 20-50; having signed an informed consent template; being submitted to an endoscopic examination with BAL; without probable causal factor already identified during the usual questioning; accepting to complete a professional and environmental questionnaire once sarcoidosis is confirmed. Exclusion: refusing the terms of the informed consent; refusing to to complete a professional and environmental questionnaire; non-completion or failure of BAL.

Mineralogical analysis (MA)

The MA of the BAL is implemented with a transmission electron microscope (TEM Jeol 1400 EX, 120kV) with a CCD camera (Gatan Orius 600) and an X-ray detector (Jeol JED-2300).

Table 1 summarizes the
characteristics of both
SarC and HV stating the
patient identification (IP),
his/her age, sex, smoking
status, country of birth,
ongoing occupation, stage
of the disease and the
sampling type on which a
sarcoid-like granuloma has
been identified.

Table 1: summarize of SarC and HV included in MINASARC study. PI: patient identify; Smo Sta: Smoking Status (0:< 5 PY; 1: 5 to 10 PY; 2: > 10PY); Stage: radiologic stage of the disease; EBUS: Endobronchial Ultrasound; BB: bronchial biopsy; SAGB: salivary gland biopsy; LB: liver biopsy; SB: skin biopsy; IEB: inner ear biopsy.

Ы	Age	Sex	Native country	Smo Sta	Current occupation	Stage	Sampling type	PI	Age	Sex	Native country	Smo Sta	Current occupation	
				SAR	COIDOSIS PATIENTS		HEALTHY VOLUNTEERS							
1	41	F	Algeria	0	Unemployed	1	EBUS	21	47	F	France	0	Auxiliary staff of school	
2	37	м	Tunisia	0	Transport business manager	2	EBUS	22	33	М	France	0	Pollster	
3	29	м	France	0	Doctor	2	EBUS	23	38	F	France	0	Housewife	
4	40	F	Algeria	0	Housewife	1	BB	24	41	М	France	1	Shop high tech assistant	
5	39	М	France	0	Baker	2	BB	25	22	F	France	0	Medicine student	
6	40	м	France	0	Salaried public relation	2	EBUS	26	36	F	France	0	Beautician	
7	46	Μ	France	2	House painter	4	BB and SAGB	27	38	М	Italy	0	Speaker on the radio	
8	38	Μ	Cameroon	0	Couturier	2	BB, SAGB and LB	28	23	F	France	0	Photographer	
9	29	F	France	0	Salaried of public service	1	EBUS	29	44	М	France	2	Unemployed	
10	35	м	Morocco	0	Salaried in insurance	2	BB and SAGB	30	22	М	France	0	Salaried in public sector housing	
11	25	м	France	0	Salesman building material	2	EBUS	31	40	н	France	0	Unemployed	
12	39	м	Angola	0	Salaried fire safety	4	BB and SB	32	32	F	France	0	Teacher	
13	36	м	Iraq	0	Building electrician	2	BB	33	33	М	France	0	Teacher	
14	48	Μ	Portugal	1	Mason	1	BB and SAGB	34	20	М	France	0	Safety agent	
15	26	Μ	France	1	Mason	2	BB	35	33	М	France	0	Police force	
16	40	Μ	United States	0	Unemployed	1	EBUS	36	33	М	France	0	Truck driver	
17	29	F	France	0	Beautician manicurist	1	EBUS	37	29	М	France	1	Salesman builing material	
18	34	F	France	0	Salaried public relation	3	BB and IEB	38	34	М	France	0	Police force	
19	40	F	Portugal	0	Interior designer	2	BB	39	37	М	France	0	Police force	
20	41	м	United States	0	Salaried marketing	3	BB	40	36	М	Tunisia	0	Truck driver	

Table 2 shows the comparison of the MA data on inorganic particles rates analyzed in TEM in SarC and matched to HV. The colored boxes correspond, on the one hand, to the questionnaire scores exceeding 29 and, on the other hand, the mineralogical analyses showing high dust rate with the accuracy mention of the nature of the particles.

The 13 subjects with a suspect MA ("high" dust loads) have a questionnaire score significantly higher than subjects with a normal MA (Mann and Whitney test p=0.0007). This result shows that SQ and MA are well correlated.

Table 2: summarize of SQ and MA in SarC and HV. Each pair is on the same line. PI: patient identify; QS: questionnaire score ; TIP TEM : total inorganic particles observed in TEM (nb/mL/LBA) ; MA : mineraligical alalysis status.

		SAF	COIDOSIS PATIENTS	HEALTHY VOLUNTEERS							
Ы	QS TIP TEM /ml MA		MA	MA	TIP TEM /ml	QS	PI				
1	18	119 000	normal	normal	96 000	15	21				
2	7	163 000	normal	Suspect (3rd Ti compo)	122 000	69	40				
3	12	85 200	normal	normal	70 200	18	30				
4	5	92 000	normal	suspect (2nd TiO)	206 000	32	26				
5	41	64 500	normal	normal	131 000	0	36				
6	38	73 700	suspect (1st Cr compo)	normal	260 000	15	39				
7	118	71 700	suspect (1st FeO)	normal	75 500	34	29				
8	48	142 000	normal	normal	57 200	9	35				
9	21	102 000	normal	normal	114 000	12	25				
10	12	60 100	normal	normal	161 000	7	33				
11	73	1 247 000	suspect (1st silica and SiAl, 2nd Ti compo)	suspect (1st CrO and Al compo)	206 000	71	34				
12	14	153 000	suspect (1st steel and TiO)	normal	122 000	16	22				
13	23	463 000	suspect (3rd silica)	normal	92 700	9	27				
14	76	88 200	normal	uninterpretable	uninterpretable	6	24				
15	60	509 000	suspect (2nd silica)	suspect (2nd Al compo)	161 000	75	37				
16	53	144 000	suspect (2nd Cr compo)	suspect (1st Ti compo)	224 000	31	38				
17	32	266 000	suspect (1st Na and Ca sulfide)	normal	113 000	20	28				
18	27	202 000	normal	normal	99 800	6	23				
19	73	43 300	normal	normal	150 000	23	32				
20	23	69 300	normal	normal	116 000	14	31				

•About AM: Bio-persistence of non-fibrous mineral particles was demonstrated (Pairon et al. 1994). The BAL's dilutions are moderated and set in situ on tissues in situ on tissue on tissues in situ on tissue on ti paraffin blocks will complete our study. Finally, filter with 0.4µm pores allows us to observe only agglomerated nanoparticles. Indeed, the isolated nanoparticles pass through the filter. •Building activities are overrepresented in SarC group in MINASARC study. Exposures to silica are generally underestimated in these activities. A study of 80 building workers equipped with individual sensors shows that 64.5% of them have an unusually high silica exposure (Rapapport et al. 2003). •<u>A cognitive problem</u> has been generated by the truncation in the definition of silicosis at the Johannesburg conference (1930). The 1930 definition of silicosis of an early pneumoconiosis (Vincent *et al.* 2015). The decrease in mining activities also lead hygienists and physicians to overlook mineral dust exposure. The risk of dust-induced granulomatosis is therefore underestimated by pulmonologists. There is no sufficient medical examination about dust exposure and the informations generally given to pathologists are scarce (in our study, one of five building activities is mentioned to pethologist and pathologists never mentioned polarized light observation). •Genetic background, hypersensitivity and exposure to inorganic particles, other contamination ways have to be considered: oral absorption, cutaneomucous application, as for podoconiosis (Ayele et al. 2012) and finally, particles issued from wear prosthesis (Péoc'h et al. 1996).

In conclusion, the results of the MINASARC study show the relevance of measuring dust exposure in patients, the negativity of the MA could be explained by non-airborne and/or nanoparticle exposures. The podoconiosis, previously described as idiopathic elephantiasis is a good example of a pathology linked to inorganic dusts and genetical hypersensitivity background. So, within the whole epidemiological hypothesis on sarcoidosis, larger prospective studies are needed. We think that a mineralogical analysis in the lymphatic system which is the common path to all inorganic dusts could be of great interest. Sarcoidosis being considered as an exclusion diagnosis, the completion of the SQ, of a MA and hypersensitivity tests for identified minerals by MA could be suggested for patients being diagnosed with a granulomatous disease.

ERS INTERNATIONAL CONGRESS 2016, LONDON United Kingdom, 3-7 september

I. Introduction

II. Material and methods

Specific questionnaire (SQ)

SarC and HV are subjected to a questionnaire about their "whole life" exposure to inorganic dusts. A scoring is proposed for all professional and non-professional activities, in order to quantify and summarize the cumulative exposure duration in life and the existence (or absence) of protection against dust as well as its effectiveness perceived by the respondent. For each question, the score can range from 0 to 5. The more numerous the situations of exposure are, the longer the cumulative exposure duration, the faultier the protections, the higher the score is. The detail of the score calculation algorithm is shown in the poster titled: "The MINASARC study: A case-control study measuring mineral exposome in sarcoidosis" (poster PA397). Each type of activity can be summarized by a subscore which is a part of the global one. For instance, a building activity score (BAS) can be computed by adding the points from questions related to construction activities, both in occupational and non-occupational contexts.

Statistical analysis

The overall dust rates and the rates for each particle class were compared between SarC and HV. In order to normalize the distribution of variables of interest, we realize the logarithmic transformation of the measured values. When data follow a normal distribution, the statistical test used is the Student t test for paired data. Otherwise, we use the Wilcoxon signed-rank test.

III. Results

Figure 1 shows the values of dust loads in number of particles per mL of BAL on the 19 couples included in the study (one HV having smoked just before BAL has been discarded). The red dots correspond, for each class of particles, to the highest values of dust loads having the same order of magnitude (1 Log range). Patients with one or more high values have a dust load considered as "high." According to this classification rule, for each class, the ranks of the patients selected as having high values are: Aluminosilicates: 1st; Silica: 1st, 2nd, 3rd; FeO: 1st; Ti Compounds: 1st, 2nd, 3rd; TiO: 1st and 2nd; Steel: 1st; CrO: 1st; Cr Compounds: 1st et 2nd; Al Compounds: 1st et 2nd; S Compounds: 1st

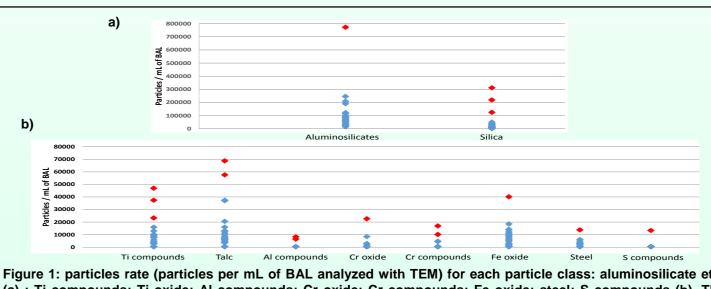


Figure 1: particles rate (particles per mL of BAL analyzed with TEM) for each particle class: aluminosilicate et silica (a); Ti compounds; Ti oxide; Al compounds; Cr oxide; Cr compounds; Fe oxide; steel; S compounds (b). The red points corresponds to higher values used for determining a suspect MA status.

building activity score; MA: mineraligica alalysis statue.

a)	Ы	Native country	QS	Current occupation	Old building activity	Non occupational building activity	BAS	МА	b)	Ы	Native country	QS	Current occupation	Old building activity	Non occupational building activity	BAS	МА
	21	France	15	Auxiliary staff of school	no	no	0	normal		1	Algeria	18	Unemployed	no	less than 1 year	0	normal
	22	France	16	Pollster	no	no	0	normal		2	Tunisia	7	Transport busuness manager	no	no	0	normal
	23	France	6	Housewife	no	no	0	normal		3	France	12	Doctor	no	no	0	normal
	24	France	6	Shop high tech assistant	no	no	0	uninterprétable		4	Algeria	5	Housewife	no	no	0	normal
	25	France	12	Medicine student	no	no	0	normal		5	France	41	Baker	no	less than 1 year	6	normal
	26	France	32	Beautician	no	no	0	suspect (2nd TiO)		6	France	38	Salaried public relation	no	less than 1 year	7	suspect (1st CrO)
	27	Italy	9	Speaker on the radio	no	less than 1 year	0	normal		7	France	118	House painter	more than 5 years	more than 5 years	40	suspecte(1st FeO)
	28	France	20	Photographer	no	no	0	normal		8	Cameroon	48	Couturier	no	1 to 5 years	4	normal
	29	France	34	Unemployed	no	less than 1 year	12	normal		9	France	21	Salaried of public service	1 to 5 years	no	4	normal
	30	France	18	Salaried in public sector housing	less than 1 year	less than 1 year	3	normal		10	Morocco	12	Salaried in insurance	no	less than 1 year	9	normal
	31	France	14	Unemployed	less than 1 year	no	3	normal		11	France	73	Salesman building material	1 to 5 years	less than 1 year	19	suspect (1st crystalline silica)
	32	France	23	Teacher	no	no	21	normal		12	Angola	14	Salaried fire safety	less than 1 year	less than 1 year	0	suspect (1st steel and TiO)
	33	France	7	Teacher	no	no	0	normal		13	Iraq	23	Building electrician	1 to 5 years	less than 1 year	10	suspect (3rd silica and crystalline silica)
	34	France	71	Safety agent	1 to 5 years	less than 1 year	0	suspect (1st CrO and Al compo)		14	Portugal	76	Mason	more than 5 years	1 to 5 years	25	normal
	35	France	9	Police force	no	no	0	normal		15	France	60	Mason	more than 5 years	1 to 5 years	27	suspect (2nd silica and crystalline silica)
	36	France	0	Truck driver	no	no	0	normal		16	United States	53	Unemployed	less than 1 year	1 to 5 years	16	suspect (2nd Cr compo)
	37	France	75	Salesman builing material	1 to 5 years	less than 1 year	25	suspect (2nd Al compo)		17	France	32	Beautician manicurist	no	less than 1 year	4	suspect (1st Na and Ca sulfide)
	38	France	31	Police force	no	less than 1 year	4	suspect (1st Ti compo)		18	France	27	Salaried public relation	no	no	0	normal
	39	France	15	Police force	no	no	0	normal		19	Portugal	73	Interior designer	less than 1 year	1 to 5 years	17	normal
	40	Tunisia	69	Truck driver	1 to 5 years	less than 1 year	27	suspect (3rd Ti compo)		20	United States	23	Salaried marketing	no	1 to 5 years	7	normal

In **Tables 3a and 3b**, we observe that in the SarC group, 5 patients have an occupation in building activity and 5 others have carried out such an activity in the past including 3 more 5 years. Fifteen among the 20 SarC have carried out construction and demolition activities outside in extra-professional contexts. In the HV group, 1 subject is active in the building sector, and 5 used to be so (3 of them for more than 1 year). Seven have had non occupational demolition and construction activities for less than 1 year. The BAS is significantly higher in SarC group (p=0,01824; Wilcoxon signed-rank test).

IV. Discussion and conclusion

For quantitative analysis of the score of SQ, the Vilcoxon signed-rank test shows that SarC have significantly higher score than HV (p=0.036).

ROC curve on the dust scores of the uestionnaire gives us a value of 29. This value is he optimum distance compared to the chance to he state "high score/sick", the method therefore admits a sensitivity of 85 % and a specificity of

Endowment fund St Gabriel

The samples from HV and SarC are blindly examined after a digestion-filtration preparation. The analysis is performed on 100 contiguous particles observed consistently over the tiles located in the center of the grid. The X-ray emission analysis allows to determine the nature of the mineral particles and classify them according to various exogenous mineral families such as: Silica ; Aluminosilicates; Ti compounds ; Cr compounds ; Cr Oxides ; Al compounds ; Fe Oxides ; Talc ; Steel ; S Compounds. The results are expressed in number of particles per mL of BAL. A comparison of the two groups is conducted from the total number of particles

> For 19 analyzable pairs, there is no significant difference between the SarC and HV groups in terms of overall mineral load (Wilcoxon: p=0.702) and for the different particle class (Student: p=0.726 and 0.634 for aluminosilicate and silica; Wilcoxon: p=0.343; 0.451; 0.092; 1; 0.181 and 1 for titanium, iron, steel, chromium, aluminum and talc).

Table 3: native country, questionnaire score (QS), current occupation, old and occupational building activity and MA on the HV (a) and SarC (b). PI : patient identify; QS: questionnaire score; BAS: