Lung tissue light microscopy analysis of inorganic fibres and non fibrous minerals on 29 control patients obtained from Lyon’s Forensic Institute

C. Chemerin1, R. Engueng1, G. Roux1, A. Berton2, A. Tabib1, L. Fantoni2, D. Malicier2, M. Vincent1

1Mineralo-pathology Unit, St Joseph St Luc Hospital 20 quaie Claude Bernard 69007 - 2Lyon’s Forensic Institute 12 avenue Rockefeller, 69008 Lyon France

INTRODUCTION

Microscopic techniques for analysing asbestos fibers in lung tissue have provided information in the understanding of asbestos-related diseases, and about mineral dust in lung tissue. Nevertheless differences in sampling, preparation and counting techniques impose on laboratories to define control populations and establish reference values for the methods that they use. These reference values, which can be used by the analyst, help him or her to estimate the probability that the disease case in question can be attributed to past mineral exposure. Guidelines for mineral analysis in biological samples recommend to define control populations for each laboratory with values obtained with the same techniques and procedures as for cases [1]. The aim of this study is to evaluate inorganic fibrous and non fibrous minerals in lung of reference population acquiring from subjects who were suicide or accident victims.

POPULATION AND METHODS

218 autopsies have been realised by the Forensic Institute of Lyon between February and June 2006. Subjects were studied according to following criteria.

Exclusion criteria: putrid corpse, evident pulmonary disease on clinical aspect or Histological study, prosecutor refusal, drowning accident inclusion criteria: family agreement

Minimal questionnaire about past exposure, occupation, addition to smoking and residence were presented to families. We studied 29 samples from lower lobe by optical microscopy (table 1).

Preparation samples: Lower lobe specimens were digested by sodium hypochlorite and collected on cellulose esters filters (pore size: 0.45μm), dried and fixed on glass slides by fusion in acetone vapors. Two samples were prepared for each specimen: one for which carbon particles were taken away for an easier asbestos bodies counting, and another for a dust evaluation.

Light microscope: magnification x400, transmitted light and phase contrast.

Counting: asbestos bodies (AB, pseudo-AB included), uncoated fibers (UF) longer than 15 mm, ferruginous bodies (FB) on opaque fiber (FBOF), FB on opaque particle (FBOP) and FB on transparent particle (FBPN) with the largest diameter of the particles greater than 15 μm (fig 1).

Results are expressed in g¹ of dry lung.

Dusty level evaluated by software Image[2]. Particles smallest than 2 pixels are ignored AB/Feret’s diameter (μm) was reported. Results are expressed in g¹ of dry lung (Fig 2).

RESULTS

1) Asbestos bodies and uncoated fibers

Table 2

<table>
<thead>
<tr>
<th>Level</th>
<th>Min</th>
<th>Max</th>
<th>Median</th>
<th>GM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,56</td>
<td>3,77</td>
<td>18,1</td>
<td>9,88</td>
<td>8,3</td>
</tr>
<tr>
<td>3,58</td>
<td>11,86</td>
<td>33,0</td>
<td>10,8</td>
<td>10,67</td>
</tr>
</tbody>
</table>

2) Dusty level: the geometric mean of our control population is 137.10¹ particles / g dry lung. Table 1 shows the distribution of the numbers of particles counted in the lung of control cases.

Table 3

<table>
<thead>
<tr>
<th>Level</th>
<th>Min</th>
<th>Max</th>
<th>Median</th>
<th>GM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,56</td>
<td>3,22</td>
<td>4,08</td>
<td>1,32</td>
<td>3,78</td>
</tr>
<tr>
<td>3,58</td>
<td>4,08</td>
<td>8,08</td>
<td>3,17</td>
<td>5,43</td>
</tr>
</tbody>
</table>

DISCUSSION

1/ AB and UF: The average number of asbestos bodies in our general autopsy population is 67.6AB/g dry lung (Table 2). No presents AB level upon 1000 (fig 2), the higher value is 648 AB/g dry lung. Our results are in accordance with literature. Chug [3] find that the average AB number was 42 AB/g wet lung (420 g dry lung) for patients (n=26) who had no occupational asbestos exposure. Dodson et al [4] find an average of AB lower than 20 AB/g wet lung (200 g dry lung). Marinescu et al [5] observe an average of 52.35 AB/g dry lung for general population of urban industrial area and of 75 AB/g dry lung for general population of rural area. We note a positive correlation between (r =0.72, p<0.05) AB and UF (Figure 4). For relationship of coated and uncoated fiber comparison of results is difficult because of differences in techniques. Studies usually used electronic microscopy to measure UF content and include short fibers (≤5 μ). We show that UF count by optical microscopy can give information about exposure subject. Our results are in agreement with the ones of Morgan and Holmes [6] who showed that the length distributions of UF and AB were dissimilar and that only charged fibers with 20 mm or shorter have been measured. Our result observed with fibers longer than 15 μm, imply that a high UF level is an indication for asbestos exposure and more investigation (patient interview, electronic analyses) have to be proceed to identify fibers.

2/ Dusty level: the original use of numerical analysis allows us to obtain mineral particle concentration. The geometric mean number of particles 137.10¹ particles / g dry lung were assessed. 14.10¹ – 123.10¹ is the range of magnitude than Chung and Wiggs [7] (470x10¹, range 180-190x10¹) and Stuttler and study [8] (486x10¹, range 110-161x10¹) although methodology differences. Indeed dusty level estimation by electronic microscopy studies includes particles under 0.5 μm. Furthermore the mean age of our control population is 48.9 year old and our subjects come from forensic institute and not from Hospitals.

The greater number of patients in our study is in the size between 0,56 μ and 2,33 μ. We don’t observe correlation between cigarette smoking and particle concentration as Stuttler et al [8]. Chung and Wiggs found correlation only for upper lobe but not for lower lobe[7]. A correlation was observed between patient age and dusty level as Stuttler et al [8].

CONCLUSION

The average number of asbestos bodies (geometric mean : 67.9 AB/g dry lung ; median : 53 ; range 15-648) of our control population of subjects from Lyon (France) urban area, who were suicide or accident victims, is in accordance with literature data. A positive correlation (r=0,82) exist between AB and UF (>15μ). A high UF level is an indication for a possible asbestos exposure. Supplementary analysed by electronic microscopy would allow fibers identification. This study shows that numerical analysis from optical microscopy, easy and low-cost method, is useful to evaluate a dusty level. Studies on pathological and occupational cases are envisaged.


